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SUMMARY

The Program Evaluation and Review Technique is a

very well-known and widely-applied method for eatimating

the amount of time required to complete a complex project.

However, if the time required to complete each subtask is

a random variable, the computation of the expected time

to complete the total project may be infeasible (for reasons

of dimensionality). The simplest way to estimate the ex-

pected time to complete the project is to assume each

subtask takes exactly its expected time to complete; and

then find a critical path. This procedure, except in

very simple cases, gives an underestimate of the true

expected time required. In 1962 D. R. Fulkerson published

a technique for estimating the expected time required

which gives values intermediate between the simplest

extimate and the true value. ThisiPaper suggests another

technique which, while more complex than Fulkerson's

method, is more accurate in that it gives estimates which

fall between Fulkerson's estimates and the true expected

value.



ANOTHER ESTIMATE OF EXPECTED CRITICAL PATH LENGTH

IN PERT NETWORKS

As in [11, we assume that we have a PERT network with

nonnegative work times assigned along the various arcs de-

pending on a discrete random variable u, where t!' probability

of the value u occurring is *(u). Number the nodes so that

j < i if there is an arc from node j to node i. We also

assume that work times on arcs comii:g into any node i are

independent from work times on arcs coming into a different

node j. In other words, u may be considered to be a Cartesian

product of random variables ui on which work times on arcs

coming into the node i depend, with *(u) being a product of

functions iui).

We wish to approximate the expected longest path. The

simplest approach is to simply assign each arc its expected

work time and calculate the longest path P0 and its work time

for this assignment. As the expectation of the sum of random

variables is the sum of the expectations of the random vari-

ables, this equals the expected length of a critical (longest)

path [3] if and only if for no value of u is some path longer

than the path Po. The method employed in [1] has greater

flexibility in that it does not force us to use the same

path for all events. In fact, the next to last ,ode of the

path is allowed to depend on the work lengths which u assigns

to arcs to the final node. However, for each u, the next to
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last node of a critical path also depends on Lhe work

lengths which u assigns to earlier arcs. This dependence

is the reason that Fulkerson's estimate [1] may fall short

of the actual expected length of a critical path. The

following example illustrates thig.

0, 10

The arcs from 1 rre allowed to take on the values 0, 1 inde-

pendently with probability . As there is only one assign-

ment of work lengths along arcs to node 4, Fulkerson's method

forces us to go through node 2 all the time, or through node

3 all the time. This results in the estimate j while the

actual expected critical length is 2. The problem occurs when

for a fixed assignment of work times on arcs to the final

node and variable assignment of work times to earlier arcs,

there is a close decision as to which node, j or k, should

be the next to last node. In general, andom fluctuation

will make a path through j longer than a path through k

for some u and vice versa for other u. However, if a

critical path to j tends to fluctuate the same way as a

critical path to k (a critical path to j is long when a

critical path to k is long) then still, little is lost in

always choosing a path through u for a fixed assignment of

work times along arcs to i. In summarv, the Fulkerson
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estimate is weakest when there is a large variance in

critical path lengths to these nodes i and k, and there

is little or negative correlation between these critical

path lengths. It is in precisely this situation that

the following modification aims to improve Fulkerson's

estimate.

Let x.(u) be the length of a critical path from node

1 to node j. We define the following quantities by recursion

on i or max (i,j): ki, hi, ni, Ni, M.. for i j, and

C.. for i > j. Define k = h- n= N= Ci M = O.
1!.

Fix i and let S be the set of nodes from which there are

arcs to i. Let work times along arcs to i depend on the

random variable t and work times along arcs to nodes j,

j < i, depend on the random variable s where s and t are
independent, the probability of s occurring being c(s), and

the probability of t being P(t). If S has one element, let

a(t) - b(t) be this element. Otherwise, define a(t), b(t) c S

so that for j E S - (a(t), b(t)}, ha(t) + ta(t)(t) 2! hb(t)

+ tb(t)(t) > h J + tj(t) where tj(t) is the work time along the

arc from j to i for the random variable t. In the following, if

a term has 0 in its denominator, set the term equal to 0. Let

t a(t) a(t) tatkt P(t) (h + t (t)), hi t max [ha(t) +

ta(t)(t), a(h(t) + ta(t)(t) + hb(t) +tb(t)(t)) + K(t)I where

K(t) = [Cb(t)b(t) - 2Ca(t)b(t) + Ca(t)a(t) + (ha(t) +

ta(t) t) -hb(t) tb(t)(t))21/ 2 max (Mb(t)a(t) +

tb(t)(t ) - a(t)(t ) Ma(t)b(t) + ta(t)(t) - tb(t)(t)),
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n i i na (t) + t a(t) (t)), N1 - max [max (N a(t) +ta()M

Nb M) + tb(t)(t))ll for i > j.,M = - max (Mjat - tat()

and M.. = max (max (Natj+t~)tlM~~ + tb(t))J,

C. -trC+ (h + t ()- 2 1
C. aeftLCt)a(t) a(t) a(t)\L 1  2(h. - n.)

(.-k.) and for i > jC = '-P(t)C + (h kh(h 1i a(t)j + (h -k)(N. - )
Define C i= C..j for j < i. We shall show by induction on

1, thac for each nude i, there is a function yi(u) of the

random variable u, satisfying the following:

I yi(u) < xiC), n,.< yi(u) KNi, yj(u) -Yk(u) Mik

ata(t)(t :- 1i lt = y.(u) :S max (y a(t) (s)

at 1 u bt)' 1 bt)t

III 2(u)(yi(u) -hi)' > C~ and
U

IV \ (u)(y,(u) -hj)( u- h) C
j y~u k)kjk'

Assume that the above statements are true when i, J, and

k are replaced by integers less than i. For each s, t the

longest path from node 1 to node i has length xj(s, t) (S) +

t(, t(t) for some node j(s, t) with an arc from node

j(s, t) to node i. Then x( t)(s 0S) + t j(5, t) (t) x Xa(t) (S)

+ tat (t). Similarly, xj( tMt j 5  t t max

(Y,(t)(s) + ta(t)(t), Yb(t)(s) + tb(t)(t)) - (y,(t)(s) +



ta(t) (t) + Ybt()+ tb(t)(t)) + +lbt s tb(t)(t

Ya(t)(S) - ta(t) ( j. Then ha(t) +ta(t) (t)I= + () 7P(S) (Y a(t) (S)

+t 8 t)()) ~p~smax[Y~t)S) t~t)(t) ~() + tb(01t)
= c(t)Y: (s) m y(S) + ta~)t +t) Ybt ~+ b(t) bt

aat)) a(t) (t)) bt

Alo E p(s )IY b(t) (S + t b(t)(t) Y(t)(. + 2 ~t (t

2 cP(s) I Yb(t) s) + t t(t) - y(ts) - tb(t/2 ma

J~h~t +tat)t)+ bt)+ abt)( a (t)
[Mb()t ) S + ta (t) t): Mab(t) ) t() (t) bt

Alo h.) -(yt)(S -h a )+(t) +

b SIyt)(S + tb~)
h)t

Sc()y~)s b't)( hba~)(t))t~t

[Mb ~ - h~t) + )(Y(t) (s) - ha(t)(tM~~~) 2+ [hbc(t) + t b(t) (t)

tbt )- (h a(t) + ta(t) t))]

(h 2 2
This shws tha we ma deiE y(s) o sai sfy -hefloig

+Ps tab(t) () b (, ) b a ~~t~ (t)()

tbt a(t)t+)) CS m ax (t) (S) + t b(t) +~t
(hat) +XkS))t) 1

t )b( 2C a.(s )t) an hat~~t [h yj(t) +sty.(t)

b(t) a .t)

7Pt(sxt)This shows bya induefn y~, )tostiofy the follois :

S )t + 1 t ax( S
betee (the actua expcte lth) o acrtica patand

(S) t t) ax [ (S + (t) x S)

7ulkerson (sx estmt fo R Tit. hw yinuto h .le

S't
betwen he atua execte legth f acriicalpat an
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Furtherc'e, n. .:.n [n + t m [ ()

+ ta (t)J KS min y.(s, t) :S max y.(s, t) Kmax (max(y (S) +

< x[a Na()+ta(t)(t)J Nb(t)() + tb(t)(t)) =N 1

Fo mij M.[max (N N-t (t))Jja(t) a(t)(tlbt ~)t)
Fo ,Mj ma Y(Mt)(S) - t (t) >ma ) .(
max [y.(s) -yt)) ta(t)() : ma [j() - y1 (s, t)J

and M -max [max (MatN + t)(t. MK.~ + t(t) )]

> ' ma ma a(t) (s) - j(s) + ta(t)(t)' Yb(t)(s) -y.(s) +
t (0J

tb(t)(t)

max [max(ya(t)(s) + ta(t)(t)i Yb(t)(s) + tb(t)(t)) - v.(s)]s, t
> max ( y.(s, t) - y.(s)].

S't 
2Also, C..= P(t)[C + (h + t () - h.) I

ii~ t) () a(t) (a(t) a(t)( 3
2(h 1 n)h 1 - k Pi)cps(

-7 P (t)T(s)[() (S) - Y a(t)(ha t +. ta(t) (t)h - hnd)

s , t

F~ i(t)T(s)(yi(s' t)rt() -h1) . Finally, fo I > C
s , t

> [(t) (a)(Y (tS) ha(t))Ys)-.]
St aS t at

+ ~P(t);p(s)(y1 (s, t) - Y a(t)(s) -ta(t) (t))(N.i - h4), t

T' r() -()( - )(Ms)-h)

> hP~t) j j)(

-~t 
(s- ~ )(y~)-h



+stP(t)P(s)(yi(s' t) ya(t)(s) - ta(t)(t))(Yj(s) hj)

(t)(ht + t ( t ) - hi) cp(s)(yj fa) - hi)

= P(t)cp(s)(yi(s, t) - hi)(yj(s) - h.).
St J

For the example:

1 0 0

0, M 2 1 -M 3 1 - 1, M2 3 - M 3 2 - 1, C3 2 - 0, C2 2 - C 3 3 - 4 ,and

h 42  4 23 )/-~ 2 -n 0 2 -N , 2 - 1 3 /4,
h4 = (+ 0 + + 0) + (- 0 + + (i +0- - 0)2)/2 - 3/4,

the actual expected critical length. Naturally, the example

exaggerates the accuracy of our estimate. One problem is

that for some assignment of work times to arcs into a node

i, there may be a close decision between three or more nodes

as to which should immediately precede i on a critical path.

In the example

2i

our estimate is still 3/4, but the actual expected critical

path length is 1 - 2 -n Without using the assumption that

work times on arcs in bundles leading into nodes J, j < i,

are independent, it is not possible to use the correlations

between critical path lengths coming in two nodes to calcu-

late how much critical paths through c(t) to i increase

4
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max (Ya(t)(s) + ta(t)(t), Yb(t)(s) + tb(t)(t); that is,

by how much cm(s)max (ya(t) (s) + ta(t)(t), Yb(t)(s) ±

tb(t)(t)' Yc(t)(s) + t c(t)(t)) exceeds E zp(s)max (y a(t)(s) +

I ta t)(t), Yb(t)(s) + tb(t)(t)). In fact, suppose that

ta(1) = tb(1)(l) = tc( )(l) = 0 and s takes on four values

with probability "I

I I III IV

Xa(l) (s) =Ya(l)(s) = 0 0 1 I

Xb(l)(s) - Yb(l)(s) = 0 I 0 1

Xc( 1 ) =Y( 1 )() 0 0

Then there is no correlation between any two of the follow--

ing: ya(t)(s), Yb(l)(s), and Yc(1)(s). However, it is never

necessary to use c(l) in a critical path; regardless of s,

there is a critical path through a or b. However, in some

sense there is correlation, as Ca(1)b(l)c(l)

s7 cP(s)(ya( 1 ) (s) - ya(1)) (Yb(1)(s) - y--b(1))(Yc(1)(s)

=- ( - J- - ) + 3( )(j)( )( - = - 1/8. There are

two problems in trying to use this. First, we would have to

calculate an expression Cijk for each triple of nodes.

Secondly, we would have the problem of using a third degree

term Cij k with tie second degree terms C.

We have already experienced these difficulties to some

extent. We have to calculate expressions C and M. for

each pair of nudes, whereas, in Fulkerson's estimate, it

was only necessary to calculate for each node. Another1ifrec nd nte
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problem was that we were able to calculate
2

s e S) (Yb(t)(s) + b(t)(t) - Ya(t)(S) ta(t)(t)), but we

needed r(s) !Yb(t)(s) + tb(t)(t) - Ya(t) (S) - ta(t)(t)Is

instead. Our solution was to bound the ratio by the

maxlyb (t)(s) + tb(t)(t) - Ya(t) (s) - ta(t) (t)j. With mores., t ttbt(t()

simplicity and less sharpness, we could have used

max (Nb(t) + tb(t) (t) - na(t) - ta(t)(t), Na(t) + ta(t) (t)

- b(t) - tb(t) (t)) instead of max (Mb(t)a(t) + tb(t)(t)

a(t)(t), Ma(t)b(t) + ta(t)(t) (t)) as a bound for

this ratio. Either of these bounds does not lose very much

sharpness if Yb(t)(s) + tb(t)(t) - Ya(t)(S) - ta(t)(t) as

a function of the random variable s has a high probability

of taking on a value near the endpoints of its range, as in

our example. However, this will not usually be the case,

particularly if we have a continuous random variable or

if the node i is far from node 1 so that lots of random

fluctuations make Yb(t)(s) + tb(t)(t) - Ya(t)(s) - ta(t)(t)

behave nearly like a continuous distribution. One solution

is to assume that Yb(t)(s) + tb(t)(t) - Ya(t)(s) - ta(t)(t)

is distributed for fixed t as a normal distribution. If

the random fluctuations add, then this is a very plausible

assumption, if the node i is far from node 1, by the central-

limit theorem. Now Yb(t)(S) + tb(t)(t) - Ya(t) (s) - ta(t)(t)

has mean x - hb't) + tb(t)(t) - h(t)(t), - ta(t) (t) and

02 b(t)b(t) a(t)b(t) a(t)a(t). Let r

ha(t) + ta(t)(t) hb(t) - tb(t)(t) Then E p(s)IYb(t)(s) +

tb(t)(t) - Ya(t)(s) - t a(t) (t01
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approximately equals

f b (t (S) + h (t12/202t S) ta( t

e yb(t)(s) hb(t) Ya(t)() + a (t)) 2

d(yb(t) (s) -Ya(t)(S))

1a 2

(x -r) e x'/ 0 dx

+ x)1 e- e ~ dx

2 2 2r 2/

2 e r + /-+ r f UeX dx
12WT F2To

where the last term can be expressed in terms of the error

function:

/e /2 dx - -err(r/a)

The expression



f(r,a) = e - r2/2 2  r fr/a e - x /2dx i f a2 > 0,

f(r,a) = r 0 if y2 < 0, where r - ha(t) + ta(t)(t) -

2

hb(t) - tb(t)(t) and a2 = Cb(t)b(t) - 2Ca(t)b(t) + Ca(t)a(t)

may be used to replace K(t) in rezursively defining hi. Note

that

r + r2 - r2 /2a2  r2  - r2/2a2

i r2/2a2

-- e >0.

Therefore, f(r, a) increases as a increases, and f(r, a) >

rlia f(r, a) f(r, 0). Therefore, we may define

h. - P(t)[t(ha(t) + ta(t) + hb(t) + tb(t)(t)) + f(r, a)].

Also, our conservative estimates of a give a conservative

estimate for f(r, a). Advantages of the use of f(r, a) are

closer estimates of the expected critical patn lengths and

avoidance of the use of the expressions Mij and Mi. The

major disadvantage is that we no longer have a guarantee

that our estimate for the expected critical path length, will

be optimistic, although it usually will be. In fact, consider

the eximple
-I~i

|
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0 1 3

p l- p

where the arc from 1 to 3 takes on the work time 0, p of the

time; 1, p of the time; and the rest of the tiine. Then

C22 = 0, C33 = 1(2p). The actual expected critical path

length is + p/2. The new estimate for h4 is I(G + 0 + + 0) +

As p gets small, sooner or later this exceeds theP2;-
expected critical path length.

Even when there are too many nodes to keep track of the

C for each pair of nodes, it is still possible to carry

through this procedure for the first hundred or so nodes,

label the h. as fi., and continue with Fulkerson's recursivL

definition [1] of the fi" When our original method of defin-

ing the hi is used, we still obtain an estimate which is no

larger than the expected critical path length.
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